The Critical Role of Metabolic Pathways in Aging
نویسندگان
چکیده
Aging is characterized by a deterioration in the maintenance of homeostatic processes over time, leading to functional decline and increased risk for disease and death. The aging process is characterized metabolically by insulin resistance, changes in body composition, and physiological declines in growth hormone (GH), insulin-like growth factor-1 (IGF-1), and sex steroids. Some interventions designed to address features of aging, such as caloric restriction or visceral fat depletion, have succeeded in improving insulin action and life span in rodents. Meanwhile, pharmacologic interventions and hormonal perturbations have increased the life span of several mammalian species without necessarily addressing features of age-related metabolic decline. These interventions include inhibition of the mammalian target of rapamycin and lifetime deficiency in GH/IGF-1 signaling. However, strategies to treat aging in humans, such as hormone replacement, have mostly failed to achieve their desired response. We will briefly discuss recent advances in our understanding of the complex role of metabolic pathways in the aging process and highlight important paradoxes that have emerged from these discoveries. Although life span has been the major outcome of interest in the laboratory, a special focus is made in this study on healthspan, as improved quality of life is the goal when translated to humans.
منابع مشابه
MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملMetabolic reprogramming, caloric restriction and aging.
Caloric restriction (CR) without malnutrition slows the aging process and extends lifespan in diverse species by unknown mechanisms. The inverse linear relationship between calorie intake and lifespan suggests that regulators of energy metabolism are important in the actions of CR. Studies in several species reveal tissue-specific changes in energy metabolism with CR and suggest that metabolic ...
متن کاملThe Role of Cyclooxygenase-2 in Signaling Pathways Promoting Colorectal Cancer
Colorectal cancer is one of the most common cancers in the world. Various factors are involved in the development and progression of this disease. One of these agents is cyclooxygenase-2 (COX-2). COX-2 is a product of the PTGS2 gene and converts free arachidonic acid to prostaglandins. COX-2 is not naturally expressed in most normal cells. Noticeably, the increased expression of COX-2 has been ...
متن کاملIntegration of the Existed Knowledge on DMN: A Critical Review Study
The default-mode network (DMN) is one of the human brain’s networks activated in resting and self-referential thinking states. The nature of this network and its normal or abnormal changes has been the subject of various studies. The aim of this study was to systematical review and integrating the findings of that studies focused on the relationship of DMN with mental disorders and aging-induce...
متن کاملThe mystery of C. elegans aging: an emerging role for fat. Distant parallels between C. elegans aging and metabolic syndrome?
New C. elegans studies imply that lipases and lipid desaturases can mediate signaling effects on aging. But why might fat homeostasis be critical to aging? Could problems with fat handling compromise health in nematodes as they do in mammals? The study of signaling pathways that control longevity could provide the key to one of the great unsolved mysteries of biology: the mechanism of aging. Bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012